skip to main content


Search for: All records

Creators/Authors contains: "Goodwin, A. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    A tidal disruption event (TDE) occurs when a star is destroyed by a supermassive black hole. Broad-band radio spectral observations of TDEs trace the emission from any outflows or jets that are ejected from the vicinity of the supermassive black hole. However, radio detections of TDEs are rare, with <20 published to date, and only 11 with multi-epoch broad-band coverage. Here we present the radio detection of the TDE AT2020vwl and our subsequent radio monitoring campaign of the outflow that was produced, spanning 1.5 yr post-optical flare. We tracked the outflow evolution as it expanded between 1016 and 1017 cm from the supermassive black hole, deducing it was non-relativistic and launched quasi-simultaneously with the initial optical detection through modelling the evolving synchrotron spectra of the event. We deduce that the outflow is likely to have been launched by material ejected from stream-stream collisions (more likely), the unbound debris stream, or an accretion-induced wind or jet from the supermassive black hole (less likely). AT2020vwl joins a growing number of TDEs with well-characterized prompt radio emission, with future timely radio observations of TDEs required to fully understand the mechanism that produces this type of radio emission in TDEs.

     
    more » « less
  2. ABSTRACT

    We present a new method of matching observations of Type-I (thermonuclear) X-ray bursts with models, comparing the predictions of a semi-analytic ignition model with X-ray observations of the accretion-powered millisecond pulsar SAX J1808.4–3658 in outburst. We used a Bayesian analysis approach to marginalize over the parameters of interest and determine parameters such as fuel composition, distance/anisotropy factors, neutron star mass, and neutron star radius. Our study includes a treatment of the system inclination effects, inferring that the rotation axis of the system is inclined $\left(69^{+4}_{-2}\right)^\circ$ from the observers line of sight, assuming a flat disc model. This method can be applied to any accreting source that exhibits Type-I X-ray bursts. We find a hydrogen mass fraction of $0.57^{+0.13}_{-0.14}$ and CNO metallicity of $0.013^{+0.006}_{-0.004}$ for the accreted fuel is required by the model to match the observed burst energies, for a distance to the source of $3.3^{+0.3}_{-0.2}\, \mathrm{kpc}$. We infer a neutron star mass of $1.5^{+0.6}_{-0.3}\, \mathrm{M}_{\odot }$ and radius of $11.8^{+1.3}_{-0.9}\, \mathrm{km}$ for a surface gravity of $1.9^{+0.7}_{-0.4}\times 10^{14}\, \mathrm{cm}\, \mathrm{s}^{-2}$ for SAX J1808.4–3658.

     
    more » « less